Beste Programmiersprache für algorithmische Handelssysteme Eine der häufigsten Fragen, die ich im QS-Postfach bekomme, ist die beste Programmiersprache für den algorithmischen Handel. Die kurze Antwort ist, dass es keine beste Sprache gibt. Strategieparameter, Leistung, Modularität, Entwicklung, Ausfallsicherheit und Kosten sind zu berücksichtigen. Dieser Artikel skizziert die notwendigen Komponenten einer algorithmischen Handelssystemarchitektur und wie Entscheidungen in Bezug auf die Umsetzung die Wahl der Sprache beeinflussen. Erstens werden die Hauptkomponenten eines algorithmischen Handelssystems betrachtet, wie die Forschungsinstrumente, Portfolio-Optimierer, Risikomanager und Ausführungs-Engine. Anschließend werden verschiedene Handelsstrategien untersucht und wie sie das Design des Systems beeinflussen. Insbesondere wird die Häufigkeit des Handels und des wahrscheinlichen Handelsvolumens diskutiert. Sobald die Handelsstrategie ausgewählt wurde, ist es notwendig, das gesamte System zu architektieren. Dazu gehören die Auswahl der Hardware, das Betriebssystem und die System-Resilienz gegen seltene, potenziell katastrophale Ereignisse. Während die Architektur berücksichtigt wird, muss die Leistung - sowohl an die Forschungsinstrumente als auch an die Live-Ausführungsumgebung - gebührend berücksichtigt werden. Was ist das Trading-System zu tun Vor der Entscheidung über die beste Sprache, mit denen ein automatisiertes Handelssystem zu schreiben ist es notwendig, die Anforderungen zu definieren. Wird das System rein ausgeführt sein, wird das System ein Risikomanagement - oder Portfolio-Konstruktionsmodul erfordern. Das System benötigt einen leistungsstarken Backtester. Für die meisten Strategien kann das Handelssystem in zwei Kategorien aufgeteilt werden: Forschung und Signalgenerierung. Die Forschung beschäftigt sich mit der Bewertung einer Strategieleistung über historische Daten. Der Prozess der Auswertung einer Handelsstrategie gegenüber früheren Marktdaten wird als Backtesting bezeichnet. Die Datengröße und die algorithmische Komplexität haben einen großen Einfluss auf die Rechenintensität des Backtests. CPU-Geschwindigkeit und Parallelität sind oft die begrenzenden Faktoren bei der Optimierung der Forschungsdurchführungsgeschwindigkeit. Die Signalgenerierung beschäftigt sich mit der Erzeugung eines Satzes von Handelssignalen aus einem Algorithmus und dem Versenden solcher Aufträge auf den Markt, in der Regel über eine Vermittlung. Für bestimmte Strategien ist ein hohes Leistungsniveau erforderlich. IO-Themen wie Netzwerkbandbreite und Latenz sind oft der begrenzende Faktor bei der Optimierung von Ausführungssystemen. So kann die Wahl der Sprachen für jede Komponente Ihres Gesamtsystems ganz anders sein. Typ, Häufigkeit und Volumen der Strategie Die Art der eingesetzten algorithmischen Strategie wird sich erheblich auf die Gestaltung des Systems auswirken. Es wird notwendig sein, die gehandelten Märkte, die Konnektivität zu externen Datenanbietern, die Häufigkeit und das Volumen der Strategie, den Kompromiss zwischen der Leichtigkeit der Entwicklung und der Leistungsoptimierung sowie jede kundenspezifische Hardware, einschließlich der zusammengesetzten Sitte, zu berücksichtigen Server, GPUs oder FPGAs, die notwendig sein könnten. Die Technologie-Entscheidungen für eine niederfrequente US-Aktienstrategie unterscheiden sich deutlich von denen eines hochfrequenten statistischen Arbitrage-Strategiehandels auf dem Futures-Markt. Vor der Wahl der Sprache müssen viele Datenverkäufer ausgewertet werden, die sich auf die jeweilige Strategie beziehen. Es wird notwendig sein, die Konnektivität mit dem Anbieter, die Struktur von APIs, die Aktualität der Daten, die Speicheranforderungen und die Widerstandsfähigkeit im Angesicht eines Verkäufers, der offline geht, zu betrachten. Es ist auch klug, schnellen Zugriff auf mehrere Anbieter zu besitzen. Verschiedene Instrumente haben alle ihre eigenen Speicherquirks, Beispiele dafür sind mehrere Tickersymbole für Aktien und Verfallsdaten für Futures (ganz zu schweigen von bestimmten OTC-Daten). Dies muss in das Plattformdesign berücksichtigt werden. Häufigkeit der Strategie ist wahrscheinlich einer der größten Treiber, wie der Technologie-Stack definiert werden wird. Strategien, die Daten häufiger einsetzen als kleinere oder zweitens Bars, bedürfen einer beträchtlichen Berücksichtigung der Leistung. Eine Strategie, die zweitens Stäbe übersteigt (d. h. Tick-Daten), führt zu einem leistungsgesteuerten Design als primäre Anforderung. Für Hochfrequenzstrategien müssen erhebliche Marktdaten gespeichert und ausgewertet werden. Software wie HDF5 oder kdb werden häufig für diese Rollen verwendet. Um die umfangreichen Datenmengen für HFT-Anwendungen zu verarbeiten, muss ein weitgehend optimiertes Backtester - und Ausführungssystem eingesetzt werden. CC (möglicherweise mit einigen Assembler) ist wahrscheinlich der stärkste Sprachkandidat. Ultra-High-Frequenz-Strategien werden fast sicherlich benutzerdefinierte Hardware wie FPGAs, Austausch Co-Location und Kern-Netzwerk-Interface-Tuning. Forschungssysteme Forschungssysteme beinhalten in der Regel eine Mischung aus interaktiver Entwicklung und automatisiertem Scripting. Die ehemalige findet oft in einer IDE wie Visual Studio, MatLab oder R Studio statt. Letzteres beinhaltet umfangreiche numerische Berechnungen über zahlreiche Parameter und Datenpunkte. Dies führt zu einer Sprachwahl, die eine einfache Umgebung bietet, um Code zu testen, bietet aber auch eine ausreichende Leistung, um Strategien über mehrere Parameterdimensionen zu bewerten. Typische IDEs in diesem Bereich sind Microsoft Visual CC, das umfangreiche Debugging-Dienstprogramme, Code-Completion-Funktionen (via Intellisense) und einfache Übersichten des gesamten Projektstacks (über die Datenbank ORM, LINQ) MatLab enthält. Die für umfangreiche numerische lineare Algebra und vektorisierte Operationen ausgelegt ist, aber in einer interaktiven Konsolenweise R Studio. Die die R statistische Sprachkonsole in einer vollwertigen IDE Eclipse IDE für Linux Java und C und semi-proprietäre IDEs wie Enthought Canopy für Python, die Datenanalyse Bibliotheken wie NumPy enthalten. SciPy Scikit-lernen und pandas in einer einzigen interaktiven (Konsole) Umgebung. Für das numerische Backtesting sind alle oben genannten Sprachen geeignet, obwohl es nicht notwendig ist, eine GUIIDE zu verwenden, da der Code im Hintergrund ausgeführt wird. Die Hauptbetrachtung in diesem Stadium ist die der Ausführungsgeschwindigkeit. Eine kompilierte Sprache (wie z. B. C) ist oft nützlich, wenn die Backtesting-Parameter-Dimensionen groß sind. Denken Sie daran, dass es notwendig ist, vor solchen Systemen vorsichtig zu sein, wenn dies der Fall ist. Interpretierte Sprachen wie Python nutzen oft Hochleistungsbibliotheken wie NumPypandas für den Backtesting-Schritt, um ein angemessenes Maß an Wettbewerbsfähigkeit mit kompilierten Äquivalenten aufrechtzuerhalten. Letztlich wird die für das Backtesting gewählte Sprache durch spezifische algorithmische Bedürfnisse sowie die Bandbreite der in der Sprache verfügbaren Bibliotheken bestimmt (mehr dazu unten). Allerdings kann die Sprache, die für den Backtester und die Forschungsumgebungen verwendet wird, völlig unabhängig von denen sein, die in der Portfolio-Konstruktion, dem Risikomanagement und den Ausführungskomponenten verwendet werden, wie zu sehen ist. Portfolio-Konstruktion und Risikomanagement Die Portfoliokonstruktions - und Risikomanagementkomponenten werden oft von den algorithmischen Händlern des Einzelhandels übersehen. Das ist fast immer ein Fehler. Diese Werkzeuge bieten den Mechanismus, durch den das Kapital erhalten bleibt. Sie versuchen nicht nur, die Anzahl der riskanten Wetten zu lindern, sondern auch die Churn der Trades selbst zu minimieren und die Transaktionskosten zu senken. Ausgefeilte Versionen dieser Komponenten können sich erheblich auf die Qualität und die Konsequenz der Rentabilität auswirken. Es ist einfach, einen Stab von Strategien zu schaffen, da der Portfolio-Konstruktionsmechanismus und der Risikomanager leicht modifiziert werden können, um mehrere Systeme zu behandeln. So sollten sie zu Beginn der Gestaltung eines algorithmischen Handelssystems als wesentliche Komponenten betrachtet werden. Die Aufgabe des Portfolio-Bausystems ist es, eine Reihe von gewünschten Trades zu tätigen und die Menge der tatsächlichen Trades zu produzieren, die den Churn minimieren, die Exposition gegenüber verschiedenen Faktoren (wie Sektoren, Assetklassen, Volatilität usw.) aufrechterhalten und die Zuteilung von Kapital zu verschiedenen optimieren Strategien in einem Portfolio. Der Portfolioaufbau reduziert sich häufig auf ein lineares Algebra-Problem (wie z. B. eine Matrixfaktorisierung) und damit ist die Leistung in hohem Maße von der Effektivität der numerischen linearen Algebra-Implementierung abhängig. Gemeinsame Bibliotheken beinhalten uBLAS. LAPACK und NAG für C. MatLab besitzt auch weitgehend optimierte Matrixoperationen. Python nutzt NumPySciPy für solche Berechnungen. Ein häufig neu ausgewogenes Portfolio erfordert eine kompilierte (und gut optimierte) Matrixbibliothek, um diesen Schritt auszuführen, um das Handelssystem nicht zu verschränken. Das Risikomanagement ist ein weiterer äußerst wichtiger Bestandteil eines algorithmischen Handelssystems. Risiko kann in vielen Formen kommen: Erhöhte Volatilität (obwohl dies für bestimmte Strategien als wünschenswert angesehen werden kann), erhöhte Korrelationen zwischen Assetklassen, Gegenpartei-Default, Serverausfälle, Black-Swan-Events und unentdeckte Bugs im Handelscode, um einen Namen zu nennen wenige. Risikomanagementkomponenten versuchen und erwarten die Auswirkungen einer übermäßigen Volatilität und Korrelation zwischen den Assetklassen und ihren nachfolgenden Auswirkungen auf das Handelskapital. Oft reduziert sich dies auf eine Reihe von statistischen Berechnungen wie Monte Carlo Stresstests. Dies ist sehr ähnlich wie die rechnerischen Bedürfnisse einer Derivate-Pricing-Engine und als solche wird CPU-gebunden. Diese Simulationen sind sehr parallelisierbar (siehe unten) und bis zu einem gewissen Grad ist es möglich, Hardware auf das Problem zu werfen. Ausführungssysteme Die Aufgabe des Ausführungssystems ist es, gefilterte Handelssignale aus den Portfoliokonstruktionen und Risikomanagementkomponenten zu erhalten und sie an eine Vermittlung oder andere Marktmittel zu senden. Für die Mehrheit der Einzelhandels-algorithmischen Handelsstrategien handelt es sich dabei um eine API - oder FIX-Verbindung zu einem Brokerage wie Interactive Brokers. Die primären Überlegungen bei der Entscheidung über eine Sprache beinhalten die Qualität der API, die Sprache-Wrapper-Verfügbarkeit für eine API, die Ausführungsfrequenz und den zu erwartenden Schlupf. Die Qualität der API verweist darauf, wie gut dokumentiert es ist, welche Art von Leistung es bietet, ob es sich um eine eigenständige Software handelt, auf die zugegriffen werden kann oder ob ein Gateway kopflos aufgebaut werden kann (d. h. keine GUI). Im Falle von Interactive Brokers muss das Trader WorkStation-Tool in einer GUI-Umgebung ausgeführt werden, um auf ihre API zuzugreifen. Ich musste einmal eine Desktop Ubuntu Edition auf einen Amazon Cloud Server installieren, um interaktive Broker remote zugreifen zu können, rein aus diesem Grund Die meisten APIs stellen eine C andor Java Schnittstelle zur Verfügung. In der Regel ist es Aufgabe der Community, sprachspezifische Wrapper für C, Python, R, Excel und MatLab zu entwickeln. Beachten Sie, dass mit jedem zusätzlichen Plugin verwendet (vor allem API Wrapper) gibt es Spielraum für Bugs, um in das System zu kriechen. Testen Sie immer Plugins dieser Art und stellen Sie sicher, dass sie aktiv gepflegt werden. Ein lohnender Messgerät ist zu sehen, wie viele neue Updates zu einer Codebasis in den letzten Monaten gemacht wurden. Die Ausführungshäufigkeit ist im Ausführungsalgorithmus von größter Bedeutung. Beachten Sie, dass Hunderte von Aufträgen jede Minute gesendet werden können und als solche Leistung kritisch ist. Der Schlupf wird durch ein leistungsstarkes Abwicklungssystem entstehen und dies wird einen dramatischen Einfluss auf die Rentabilität haben. Statisch typisierte Sprachen (siehe unten) wie CJava sind in der Regel optimal für die Ausführung, aber es gibt einen Kompromiss in Entwicklungszeit, Test und Wartungsfreundlichkeit. Dynamisch typisierte Sprachen wie Python und Perl sind jetzt in der Regel schnell genug. Achten Sie stets darauf, dass die Bauteile modular aufgebaut sind (siehe unten), so dass sie als Systemwaage ausgetauscht werden können. Architektonischer Planungs - und Entwicklungsprozess Die Komponenten eines Handelssystems, dessen Frequenz - und Volumenanforderungen wurden oben diskutiert, aber die Systeminfrastruktur ist noch nicht abgedeckt. Diejenigen, die als Einzelhändler handeln oder in einem kleinen Fonds arbeiten, werden wahrscheinlich viele Hüte tragen. Es wird notwendig sein, das Alpha-Modell, das Risikomanagement und die Ausführungsparameter sowie die endgültige Implementierung des Systems abdecken zu können. Bevor wir in spezifische Sprachen eintauchen, wird die Gestaltung einer optimalen Systemarchitektur diskutiert. Trennung von Bedenken Eine der wichtigsten Entscheidungen, die zu Beginn getroffen werden müssen, ist, wie man die Anliegen eines Handelssystems trennen kann. In der Softwareentwicklung bedeutet dies im Wesentlichen, wie man die verschiedenen Aspekte des Handelssystems in separate modulare Komponenten zerlegt. Durch das Belichten von Schnittstellen an jedem der Komponenten ist es einfach, Teile des Systems für andere Versionen auszutauschen, die Leistung, Zuverlässigkeit oder Wartung unterstützen, ohne irgendeinen externen Abhängigkeitscode zu modifizieren. Dies ist die beste Praxis für solche Systeme. Für Strategien bei niedrigeren Frequenzen werden solche Praktiken empfohlen. Für den Hochfrequenzhandel muss das Regelwerk auf Kosten der Optimierung des Systems für noch mehr Leistung ignoriert werden. Ein stärker gekoppeltes System kann wünschenswert sein. Das Erstellen einer Komponentenkarte eines algorithmischen Handelssystems ist einen Artikel an sich wert. Allerdings ist ein optimaler Ansatz, um sicherzustellen, dass es getrennte Komponenten für die historischen und Echtzeit-Marktdateneingaben, Datenspeicherung, Datenzugriffs-API, Backtester, Strategieparameter, Portfolio-Konstruktion, Risikomanagement und automatisierte Ausführungssysteme gibt. Zum Beispiel, wenn der verwendete Datenspeicher derzeit auch unter erheblichen Optimierungsniveaus unterdurchschnittlich ist, kann er mit minimaler Umschreibung auf die Datenaufnahme oder Datenzugriffs-API ausgetauscht werden. Soweit der Backtester und die nachfolgenden Komponenten betroffen sind, gibt es keinen Unterschied. Ein weiterer Vorteil von getrennten Komponenten ist, dass es eine Vielzahl von Programmiersprachen im Gesamtsystem verwendet werden kann. Es besteht keine Notwendigkeit, auf eine einzige Sprache beschränkt zu sein, wenn die Kommunikationsmethode der Komponenten sprachunabhängig ist. Dies ist der Fall, wenn sie über TCPIP, ZeroMQ oder ein anderes sprachunabhängiges Protokoll kommunizieren. Als konkretes Beispiel ist der Fall eines Backtesting-Systems zu betrachten, das in C für die Zahl Crunching-Performance geschrieben wird, während die Portfolio-Manager und Ausführungs-Systeme in Python mit SciPy und IBPy geschrieben werden. Leistungsüberlegungen Die Performance ist für die meisten Handelsstrategien von großer Bedeutung. Für höhere Frequenzstrategien ist es der wichtigste Faktor. Die Leistung deckt eine breite Palette von Problemen ab, wie etwa die algorithmische Ausführungsgeschwindigkeit, die Netzwerklatenz, die Bandbreite, die Daten IO, die Konkurrenz und die Skalierung. Jeder dieser Bereiche wird individuell von großen Lehrbüchern abgedeckt, so dass dieser Artikel nur die Oberfläche jedes Themas kratzen wird. Architektur und Sprachwahl werden nun in Bezug auf ihre Auswirkungen auf die Leistung diskutiert. Die vorherrschende Weisheit, wie von Donald Knuth angegeben. Einer der Väter der Informatik, ist die vorzeitige Optimierung die Wurzel allen Übels. Dies ist fast immer der Fall - außer beim Aufbau eines hochfrequenten Trading-Algorithmus Für diejenigen, die sich für niederfrequente Strategien interessieren, ist ein gemeinsamer Ansatz, ein System auf die einfachste Weise zu bauen und nur zu optimieren, wenn Engpässe beginnen zu erscheinen. Profiling-Tools werden verwendet, um festzustellen, wo Engpässe entstehen. Profile können für alle oben aufgeführten Faktoren erstellt werden, entweder in einer MS Windows - oder Linux-Umgebung. Es gibt viele Betriebssystem-und Sprach-Tools zur Verfügung, um dies zu tun, sowie Drittanbieter-Dienstprogramme. Die Sprachwahl wird nun im Rahmen der Performance diskutiert. C, Java, Python, R und MatLab enthalten alle Hochleistungsbibliotheken (entweder als Teil ihres Standards oder extern) für die Grunddatenstruktur und die algorithmische Arbeit. C-Schiffe mit der Standard-Vorlagenbibliothek, während Python NumPySciPy enthält. Gemeinsame mathematische Aufgaben sind in diesen Bibliotheken zu finden und es ist selten vorteilhaft, eine neue Implementierung zu schreiben. Eine Ausnahme ist, wenn eine hochgradig angepasste Hardwarearchitektur erforderlich ist und ein Algorithmus umfangreiche Verwendung von proprietären Erweiterungen (wie z. B. benutzerdefinierte Caches) macht. Allerdings verschwendet oft die Neuerung des Rades Zeit, die besser ausgegeben werden könnte, um andere Teile der Handelsinfrastruktur zu entwickeln und zu optimieren. Entwicklungszeit ist vor allem im Kontext von Sohlenentwicklern äußerst wertvoll. Latenz ist oft ein Thema des Ausführungssystems, da die Forschungsinstrumente meist auf derselben Maschine liegen. Für die ersteren kann die Latenzzeit an mehreren Punkten entlang des Ausführungspfades auftreten. Datenbanken müssen konsultiert werden (Disknetwork Latency), Signale müssen generiert werden (Betriebssyste, kernal Messaging Latenz), Handelssignale gesendet (NIC Latenz) und Aufträge verarbeitet (Austausch der internen Latenz des Systems). Für höhere Frequenzoperationen ist es notwendig, sich mit der kernalen Optimierung sowie der Optimierung der Netzwerkübertragung vertraut zu machen. Dies ist ein tiefer Bereich und ist deutlich über den Umfang des Artikels, aber wenn ein UHFT-Algorithmus gewünscht wird dann bewusst sein, die Tiefe des Wissens erforderlich Caching ist sehr nützlich in der Toolkit eines quantitativen Handel Entwickler. Caching bezieht sich auf das Konzept der Speicherung von häufig zugegriffenen Daten in einer Weise, die einen leistungsfähigeren Zugriff ermöglicht, auf Kosten der potentiellen Staleness der Daten. Ein häufiger Anwendungsfall tritt bei der Web-Entwicklung bei der Datenübertragung von einer disk-backed relationalen Datenbank auf und setzt sie in den Speicher. Alle nachfolgenden Anfragen für die Daten müssen nicht auf die Datenbank treffen und so können Leistungssteigerungen erheblich sein. Für Handelssituationen kann das Caching äußerst vorteilhaft sein. Zum Beispiel kann der aktuelle Status eines Strategieportfolios in einem Cache gespeichert werden, bis er neu ausgeglichen wird, so dass die Liste nicht auf jeder Schleife des Handelsalgorithmus regeneriert werden muss. Eine solche Regeneration ist wahrscheinlich eine hohe CPU - oder Festplatten-IO-Operation. Das Caching ist jedoch nicht ohne eigene Probleme. Die Regeneration von Cache-Daten auf einmal, aufgrund der volatilen Natur des Cache-Speichers, kann erhebliche Nachfrage nach Infrastruktur stellen. Ein weiteres Problem ist das Hunde-Stapeln. Wo mehrere Generationen einer neuen Cache-Kopie unter extrem hoher Belastung durchgeführt werden, was zu Kaskadenfehler führt. Die dynamische Speicherzuordnung ist eine teure Bedienung bei der Softwareausführung. So ist es zwingend erforderlich, dass hochleistungsfähige Handelsanwendungen sich bewusst sind, wie Speicher während des Programmablaufs zugewiesen und freigegeben wird. Neuere Sprachstandards wie Java, C und Python führen automatisch eine automatische Garbage Collection durch. Die sich auf die Freigabe des dynamisch zugewiesenen Speichers bezieht, wenn Objekte aus dem Geltungsbereich gehen. Garbage Collection ist äußerst nützlich während der Entwicklung, da es Fehler reduziert und hilft Lesbarkeit. Allerdings ist es für bestimmte Hochfrequenz-Handelsstrategien oftmals suboptimal. Für diese Fälle ist oft eine benutzerdefinierte Garbage Collection erwünscht. In Java, zum Beispiel durch Abstimmung der Garbage Collector und Heap-Konfiguration, ist es möglich, hohe Leistung für HFT-Strategien zu erhalten. C stellt keinen nativen Garbage Collector zur Verfügung und so ist es notwendig, alle Speicherzuweisungen als Teil einer Objektimplementierung zu behandeln. Während potenziell fehleranfällig (potenziell zu baumelnden Zeigern führen) ist es äußerst nützlich, eine feinkörnige Kontrolle darüber zu haben, wie Objekte auf dem Haufen für bestimmte Anwendungen erscheinen. Bei der Auswahl einer Sprache ist zu beachten, wie der Müllsammler arbeitet und ob er modifiziert werden kann, um für einen bestimmten Anwendungsfall zu optimieren. Viele Operationen in algorithmischen Handelssystemen sind der Parallelisierung zugänglich. Dies bezieht sich auf das Konzept der Durchführung mehrerer programmatischer Operationen zur gleichen Zeit, d. h. parallel. So genannte peinlich parallele Algorithmen beinhalten Schritte, die vollständig unabhängig von anderen Schritten berechnet werden können. Bestimmte statistische Operationen wie Monte-Carlo-Simulationen sind ein gutes Beispiel für peinlich parallele Algorithmen, da jede zufällige Zeichnung und nachfolgende Pfadoperation ohne Kenntnis anderer Pfade berechnet werden können. Andere Algorithmen sind nur teilweise parallelisierbar. Fluid-Dynamik-Simulationen sind ein solches Beispiel, wo die Domäne der Berechnung unterteilt werden kann, aber letztlich müssen diese Domänen miteinander kommunizieren und somit sind die Operationen teilweise sequentiell. Parallelisierbare Algorithmen unterliegen dem Amdahls-Gesetz. Die eine theoretische Obergrenze für die Leistungserhöhung eines parallelisierten Algorithmus liefert, wenn sie N getrennten Prozessen (z. B. auf einem CPU-Kern oder einem Thread) unterworfen ist. Die Parallelisierung ist zunehmend wichtiger als Optimierungsmechanismus, da die Prozessor-Taktraten stagniert haben, da neuere Prozessoren viele Kerne enthalten, mit denen parallele Berechnungen durchgeführt werden können. Der Anstieg der Consumer-Grafikhardware (überwiegend für Videospiele) hat zur Entwicklung von Graphic Processing Units (GPUs) geführt, die Hunderte von Cores für sehr gleichzeitige Operationen enthalten. Solche GPUs sind jetzt sehr erschwinglich. High-Level-Frameworks, wie Nvidias CUDA haben zu einer breiten Akzeptanz in Akademie und Finanzen geführt. Diese GPU-Hardware eignet sich in der Regel nur für den Forschungsaspekt der quantitativen Finanzierung, während für (U) HFT weitere spezialisierte Hardware (einschließlich Field-Programmable Gate Arrays - FPGAs) verwendet werden. Heutzutage unterstützen die meisten modernen Langzeiten einen Grad der Gleichzeitigkeit. So ist es einfach, einen Backtester zu optimieren, da alle Berechnungen in der Regel unabhängig von den anderen sind. Skalierung in Software-Engineering und Operationen bezieht sich auf die Fähigkeit des Systems, konsequent zunehmende Lasten in Form von größeren Anfragen, höhere Prozessor-Nutzung und mehr Speicherzuweisung zu behandeln. Im algorithmischen Handel ist eine Strategie in der Lage, zu skalieren, wenn sie größere Mengen an Kapital akzeptieren und immer noch konsistente Renditen erzielen kann. Der Trading-Technologie-Stack skaliert, wenn es größere Handelsvolumina und erhöhte Latenz, ohne Engpässe aushalten kann. Während Systeme maßstabsgetreu gestaltet werden müssen, ist es oft schwer vorherzusagen, wo ein Engpass stattfindet. Rigourous Logging, Test, Profiling und Monitoring wird dazu beitragen, dass ein System skaliert werden kann. Sprachen selbst werden oft als unskalierbar beschrieben. Dies ist in der Regel das Ergebnis von Fehlinformationen, anstatt harte Tatsache. Es ist der gesamte Technologie-Stack, der für die Skalierbarkeit ermittelt werden sollte, nicht die Sprache. Eindeutig haben bestimmte Sprachen eine größere Leistung als andere in bestimmten Anwendungsfällen, aber eine Sprache ist niemals besser als eine andere in jeder Hinsicht. Ein Mittel zur Verwaltung von Skalen ist, um Bedenken zu trennen, wie oben erwähnt. Um die Fähigkeit, Spikes im System zu bewältigen (d. h. plötzliche Volatilität, die ein Floß von Trades auslöst) weiterzuführen, ist es sinnvoll, eine Message-Warteschlangenarchitektur zu erstellen. Dies bedeutet einfach, dass ein Message-Queue-System zwischen Komponenten platziert wird, so dass Aufträge gestapelt werden, wenn eine bestimmte Komponente nicht in der Lage ist, viele Anfragen zu verarbeiten. Anstatt zu verlangen, werden sie einfach in einem Stapel gehalten, bis die Nachricht behandelt wird. Dies ist besonders nützlich für das Senden von Trades an eine Ausführungsmaschine. Wenn der Motor unter schwerer Latenz leidet, dann wird er Trades zurücksetzen. Eine Warteschlange zwischen dem Handelssignalgenerator und der Ausführungs-API löst dieses Problem auf Kosten eines potenziellen Handelsschlupfes ab. Ein gut respektierter Open Source Message Queue Broker ist RabbitMQ. Hardware und Betriebssysteme Die Hardware, die Ihre Strategie ausführt, kann einen erheblichen Einfluss auf die Rentabilität Ihres Algorithmus haben. Dies ist kein Thema, das auch auf Hochfrequenz-Händler beschränkt ist. Eine schlechte Wahl in Hardware und Betriebssystem kann zu einem Maschinen-Crash oder Neustart am meisten unpassenden Moment führen. So ist es notwendig zu prüfen, wo Ihre Bewerbung wohnen wird. Die Wahl liegt in der Regel zwischen einem persönlichen Desktop-Rechner, einem Remote-Server, einem Cloud-Provider oder einem Exchange-Server. Desktop-Rechner sind einfach zu installieren und zu verwalten, vor allem mit neueren benutzerfreundlichen Betriebssystemen wie Windows 78, Mac OSX und Ubuntu. Desktop-Systeme besitzen jedoch einige erhebliche Nachteile. In erster Linie ist, dass die Versionen von Betriebssystemen, die für Desktop-Maschinen entworfen sind, wahrscheinlich rebootspatching (und oft im schlimmsten Fall) erfordern. Sie nutzen auch mehr Rechenressourcen, indem sie eine grafische Benutzeroberfläche (GUI) erfordern. Die Verwendung von Hardware in einer Heimat (oder lokalen Büro) Umgebung kann zu Internet-Konnektivität und Power-Uptime-Probleme führen. Der Hauptvorteil eines Desktop-Systems ist, dass erhebliche rechnerische Leistung für den Bruchteil der Kosten eines entfernten dedizierten Servers (oder Cloud-basierten Systems) mit vergleichbarer Geschwindigkeit erworben werden kann. Eine dedizierte Server - oder Cloud-basierte Maschine, die oft teurer als eine Desktop-Option ist, ermöglicht eine signifikante Redundanzinfrastruktur, wie z. B. automatisierte Datensicherungen, die Möglichkeit, die Verfügbarkeit und Fernüberwachung einfacher zu gewährleisten. Sie sind schwerer zu verwalten, da sie die Möglichkeit benötigen, Remote-Login-Funktionen des Betriebssystems zu verwenden. In Windows ist dies in der Regel über das GUI Remote Desktop Protocol (RDP). In Unix-basierten Systemen wird die Kommandozeile Secure SHell (SSH) verwendet. Unix-basierte Server-Infrastruktur ist fast immer Kommandozeilen-basiert, die sofort GUI-basierte Programmierungstools (wie MatLab oder Excel) unbrauchbar macht. Ein Co-Server, wie die Phrase in den Kapitalmärkten verwendet wird, ist einfach ein dedizierter Server, der sich in einem Austausch befindet, um die Latenz des Handelsalgorithmus zu reduzieren. Dies ist absolut notwendig für bestimmte hochfrequente handelsstrategien, die auf niedrige latenz angewiesen sind, um alpha zu erzeugen. Der letzte Aspekt der Hardware-Auswahl und die Wahl der Programmiersprache ist die Plattform-Unabhängigkeit. Gibt es eine Notwendigkeit für den Code, um über mehrere verschiedene Betriebssysteme laufen zu lassen Ist der Code entworfen, um auf einer bestimmten Art von Prozessorarchitektur ausgeführt werden, wie die Intel x86x64 oder wird es möglich sein, auf RISC-Prozessoren wie die von ARM hergestellt ausgeführt werden Diese Fragen hängen in hohem Maße von der Häufigkeit und Art der Umsetzung ab. Resilienz und Testing Eine der besten Möglichkeiten, um eine Menge Geld auf algorithmischen Handel zu verlieren ist ein System ohne Resilienz zu schaffen. Dies bezieht sich auf die Dauerhaftigkeit des Systems bei seltenen Ereignissen wie etwa Maklerkonkurs, plötzliche Überflüssigkeit, regionale Ausfallzeiten für einen Cloud-Server-Provider oder das versehentliche Löschen einer gesamten Handelsdatenbank. Jahrelange Gewinne können innerhalb von Sekunden mit einer schlecht gestalteten Architektur beseitigt werden. Es ist absolut notwendig, Fragen wie Debuggng, Test, Logging, Backups, Hochverfügbarkeit und Überwachung als Kernkomponenten Ihres Systems zu betrachten. Es ist wahrscheinlich, dass in einer vernünftig komplizierten benutzerdefinierten quantitativen Handelsanwendung mindestens 50 der Entwicklungszeit für Debugging, Test und Wartung ausgegeben wird. Fast alle Programmiersprachen versenden entweder mit einem zugehörigen Debugger oder besitzen gut respektierte Drittanbieter-Alternativen. Im Wesentlichen erlaubt ein Debugger die Ausführung eines Programms mit dem Einfügen von beliebigen Haltepunkten in den Codepfad, der die Ausführung vorübergehend stoppt, um den Zustand des Systems zu untersuchen. Der Hauptvorteil des Debugging ist, dass es möglich ist, das Verhalten des Codes vor einem bekannten Crash-Punkt zu untersuchen. Debugging ist eine wesentliche Komponente in der Toolbox zur Analyse von Programmierfehlern. Allerdings sind sie weit verbreitet in kompilierten Sprachen wie C oder Java verwendet, da interpretierte Sprachen wie Python sind oft einfacher zu debuggen aufgrund weniger LOC und weniger ausführliche Aussagen. Trotz dieser Tendenz gibt Python mit dem pdb. Das ist ein anspruchsvolles Debugging-Tool. Die Microsoft Visual C IDE besitzt umfangreiche GUI-Debugging-Dienstprogramme, während für die Befehlszeile Linux C-Programmierer der gdb-Debugger existiert. Das Testen in der Softwareentwicklung bezieht sich auf den Prozess der Anwendung bekannter Parameter und Ergebnisse auf spezifische Funktionen, Methoden und Objekte innerhalb einer Codebasis, um das Verhalten zu simulieren und mehrere Code-Pfade auszuwerten, um sicherzustellen, dass sich ein System so verhält wie es sollte. Ein neueren Paradigma gilt als Test Driven Development (TDD), bei dem Testcode gegen eine bestimmte Schnittstelle ohne Implementierung entwickelt wird. Vor dem Abschluss der eigentlichen Codebasis fehlen alle Tests. Als Code geschrieben wird, um die Leerzeichen auszufüllen, werden die Tests schließlich alle passieren, an welcher Stelle die Entwicklung aufhören sollte. TDD erfordert umfangreiche Vorab-Spezifikation Design sowie eine gesunde Disziplin, um erfolgreich durchzuführen. In C bietet Boost ein Unit-Test-Framework. In Java existiert die JUnit-Bibliothek, um denselben Zweck zu erfüllen. Python hat auch das unentdeckte Modul als Teil der Standardbibliothek. Viele andere Sprachen besitzen Unit-Test-Frameworks und oft gibt es mehrere Optionen. In einer Produktionsumgebung ist eine anspruchsvolle Protokollierung unbedingt erforderlich. Die Protokollierung bezieht sich auf den Prozess der Ausgabe von Nachrichten, mit verschiedenen Graden der Schwere, hinsichtlich des Ausführungsverhaltens eines Systems zu einer flachen Datei oder Datenbank. Logs sind eine erste Angriffslinie bei der Jagd nach unerwartetem Programmlaufzeitverhalten. Leider sind die Mängel eines Logging-Systems erst nach der Tatsache entdeckt worden. Wie bei den unten besprochenen Backups sollte ein Logging-System vor der Betrachtung eines Systems berücksichtigt werden. Sowohl Microsoft Windows als auch Linux kommen mit umfangreichen System Logging-Fähigkeit und Programmiersprachen neigen dazu, mit Standard-Protokollierung Bibliotheken, die die meisten Anwendungsfälle zu decken. Es ist oft ratsam, die Logging-Informationen zu zentralisieren, um sie zu einem späteren Zeitpunkt zu analysieren, da sie oft zu Ideen zur Verbesserung der Performance oder Fehlerreduktion führen kann, was sich fast sicherlich positiv auf Ihre Handelsrenditen auswirken wird. Während die Protokollierung eines Systems Informationen darüber liefert, was in der Vergangenheit passiert ist, wird die Überwachung einer Anwendung einen Einblick geben, was gerade passiert. Alle Aspekte des Systems sollten für die Überwachung berücksichtigt werden. System-Level-Metriken wie Datenträgerverwendung, verfügbarer Speicher, Netzwerkbandbreite und CPU-Auslastung bieten grundlegende Ladeinformationen. Handelsmetriken wie abnormales Preisvolumen, plötzliche rasche Abzüge und Kontobewegungen für verschiedene Sektormarken sollten ebenfalls kontinuierlich überwacht werden. Weiterhin sollte ein Schwellensystem angelegt werden, das eine Benachrichtigung gibt, wenn bestimmte Metriken verletzt werden, wodurch die Benachrichtigungsmethode (E-Mail, SMS, automatisierter Telefonanruf) abhängig von der Schwere der Metrik erhöht wird. Systemüberwachung ist oft die Domäne des Systemadministrators oder Operations Managers. Als einziger Handelsentwickler müssen diese Metriken jedoch als Teil des größeren Designs etabliert werden. Viele Lösungen für die Überwachung bestehen: proprietäre, gehostete und Open Source, die eine umfangreiche Anpassung der Metriken für einen bestimmten Anwendungsfall ermöglichen. Backups und hohe Verfügbarkeit sollten vorrangige Anliegen eines Handelssystems sein. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected The answers to both of these questions are often sobering It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment Similarly, high availability needs to be baked in from the start. Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I wont delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system. Choosing a Language Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised. Type Systems When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript. For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesnt catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. Dynamic languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone. Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPySciPy alleviate this issue due to enforcing a type within arrays. Open Source or Proprietary One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. There are advantages and disadvantages to both approaches. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensingmaintenance costs. The Microsoft stack (including Visual C, Visual C) and MathWorks MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant battle testing in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds. Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C, C and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many pluginslibraries (some free, some commercial) for nearly any quantitative research domain. There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools play well with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned. MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive. Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQLPostgreSQL, Python, R, C and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats. The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Further, they often allow interactive console based development, rapidly reducing the iterative development process. Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce. Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C in order to improve execution speeds, but it requires some experience in multi-language programming. While proprietary software is not immune from dependencyversioning issues it is far less common to have to deal with incorrect library versions in such environments. Open source operating systems such as Linux can be trickier to administer. I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C and R. The maturity, community size, ability to dig deep if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend. Batteries Included The header of this section refers to the out of the box capabilities of the language - what libraries does it contain and how good are they This is where mature languages have an advantage over newer variants. C, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms. C is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms for free. Python is known for being able to communicate with nearly any other type of systemprotocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance). Outside of the standard libraries, C makes use of the Boost library, which fills in the missing parts of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C11 spec, including native support for lambda expressions and concurrency. Python has the high performance NumPySciPyPandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL (MySQLC), JDBC (JavaMatLab), MySQLdb (MySQLPython) and psychopg2 (PostgreSQLPython). Python can even communicate with R via the RPy plugin An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C and Java, but some also support C and Python, either directly or with community-provided wrapper code to the C APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol . Conclusion As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries. The benefit of a separated architecture is that it allows languages to be plugged in for different aspects of a trading stack, as and when requirements change. A trading system is an evolving tool and it is likely that any language choices will evolve along with it. Just Getting Started with Quantitative TradingFinancial Trading Systems Design and Development with C Description A complete blueprint for designing and implementing a state-of-the-art trading and risk management system Providing a highly accessible mix of good software design, practical mathematical models and today039s most widely used business practices, this book arms you with everything you need to create a sophisticated trading and risk management system appropriate for most asset classes. Gurav Mengla, a top financial trading system software designer, draws upon his years of experience at Barclays, HSBC and other leading financial institutions to cut through the complexities of trading system design, offering you time-tested solutions to virtually all technical challenges to automated trading system design and implementation. Packed with case studies and examples from top financial institutions, worldwide, complete with system design details and source code Emphasizes extensibility, and scalability with strategies for incorporating new models seamlessly into existing systems Features comprehensive coverage of the most widely used financial models and most prevalent practices in the financial community today Explores daily, weekly, monthly and yearly reporting subsystem that aggregate risk at all organizational levels from desk to department to division to the entire firm CD includes valuable data and system design details from the book, including C source code and system modelsshow more Product details Format Mixed media product 512 pages Dimensions 150 x 250mm 505g Publication date 09 Nov 2016 Publisher John Wiley amp Sons Inc Publication CityCountry New York, United States Language English ISBN10 0471667706 ISBN13 9780471667704 Bestsellers rank 1,394,799The Easiest Programming Language for Traders Introducing TradeScript, our powerful new programming language which allows traders to design trading systems without prior programming experience. Whos it for TradeScript is a development component designed for software developers who want to expand the set of features on their trading application by providing a scripting language. TradeScript, as a language, is intended for traders who need to write their own trading strategies but dont know how to program in low-level languages such as C and C. TradeScript allows traders develop trading systems quickly and effortlessly. Its as easy as 1-2-3. With TradeScript, you can enable your trading application to run scripts which provide alerts when the price of a security (stock, futures, or forex) reaches a new high, crosses over a moving average, or drops a set percentage, though those are only a few examples. TradeScript can also scan the market, generate trade signals, back-test trading strategies, and much more. Vector Programming Languages Most popular trading applications such as MetaStock, TradeStation, NinjaTrader, MetaTrader and others provide their own programming languages (such as MQL4, MQL5, EasyLanguage, MetaStocks scripting language, etc.). Without a programming language, traders are unable to develop automated trading systems or perform back-testing of strategies. A vector programming language offers extreme flexibility with a minimal learning curve. In fact, in just five minutes, you can start writing with TradeScript. So what is a vector programming language, and why is it so easy to learn Vector programming languages (also known as array or multidimensional languages) generalize operations on scalars to apply transparently to vectors, matrices, and higher dimensional arrays. The idea behind vector programming is that operations apply at once to an entire set of values (a vector or field). This allows you to think and operate on whole aggregates of data, without resorting to explicit loops of individual scalar operations. In other words, its similar to the macro language found in Excel. The easiest programming language for traders. The most powerful, too. An example: to calculate a simple moving average based on the median price of a security over 30 days, in a traditional programming language such as BASIC, you would be required to write a program similar to the code shown in this block of code. Several lines of code would be required to create the MedianAverages vector. But with TradeScript, you can accomplish the same thing using only one line of code as show below. For bar 30 to max Average 0 For n bar - 30 to bar median (CLOSE OPEN) 2 Average Average median Next MedianAverages(bar) Average 30 Next bar SET MedianAverage SimpleMovingAverage((CLOSE OPEN) 2, 30) And now MedianAverage becomes a new vector which contains the 30-period simple moving average of the median price of the security. It is not uncommon to find array programming language one-liners that require more than a couple of pages of BASIC, Java, or C code. The same holds true for creating trading systems for back testing and trade alerts. TradeScript was originally designed as a high-performance programming language for high-frequency traders. It was designed to scan over 100,000 stocks based on complex technical criteria and return instantaneious results - in under five milliseconds. That was over ten years ago. Today it is even faster. Quick Easy Development Solution If youre a software developer, youll be surprised to know that it only takes about 30 minutes to implement TradeScript into your trading application. TradeScript comes with context-sensitive help, and our Programmers Guide can be shipped with your application. Adding a scripting language to your trading application couldnt be any easier. Get Started with TradeScript M4 Trading Platform Implementation TradeScript is the programming language used in our M4 trading platform. where it executes automated trades, processes real time alerts, runs stock scans, and back-tests trading systems. Available in C and in C Versions TradeScript is available in both C (x64 for best performance) and C for developing web applications. It comes with over 30 example projects and extensive developer support to help you implement the library into your project. Common Development Scenarios TradeScript is most commonly used in one of three scenarios. It is often used inside desktop trading applications, where it is embedded on the client side. It is also commonly used on the server side, where it runs strategies for thin clients, such as mobile and web applications. Another common scenario is where TradeScript is run on the server side in order to provide real time scanning results to web and mobile users. Genetic Programming A genetic algorithm can be integrated into TradeScript to create an autonomous trading system creation engine. Check our Evo2 genetic algorithm engine which comes with TradeScript examples. Case Study TradeScript is used in a number of popular trading applications, one of which is the WhenToTrade Cycles and Genetic Algorithm Platform. The case study describes how TradeScript is implemented to perform cyclical analysis of the markets. The WhenToTrade Cycles and GA Platform combines technical analysis using TradeScript and financial charting using StockChartX with novel algorithms for cyclic analysis. The solution is part of a complete knowledge package and enables traders to apply the derived strategies to all kinds of markets and timeframes. With TradeScript, you can: Create automated order entry scripts Run thousands of simultaneous alerts Create back tests and trading system optimizations Build script-driven charts and expert advisors Get formula outputs in real-time Why Choose Modulus Modulus is a financial technology company. While that may not sound like a real differentiator, it is. It means that our solutions come from our years of experience in the financial technology industry. Our products and services are provided by developers and engineers who have first-hand trading experience. Everyone here at Modulus speaks your language. WELCOME TO TRADING SYSTEM LAB: MANY MORE VIDEOS ARE AVAILABLE ON OUR FLASH DEMO LINK TO THE LEFT, HOWEVER HERE IS A SIMPLE 6 MINUTE EXAMPLE USING OUR ADVANCED MACHINE LEARNING ALGORITHM, CREATING A SINGLE MARKET TRADING STRATEGY REQUIRING NO PROGRAMMING. TSL CAN CREATE SINGLE MARKET STRATEGIES, DAYTRADING, PAIRS, PORTFOLIOS AND OPTIONS STRATEGIES USING THE SAME GENERAL WORK FLOW. HERE raquo MARCH 2017 UPDATE: TSL produces completely OPEN CODE machine learning based trading strategies requiring no programming on the part of the user. TSL is not a Black Box. The math, variables, logic, signal generation, preprocessing, etc. are exported in OPEN CODE. Many of the systems come out of the evolutionary process extremely simple with the core GP code being only 7-15 lines of code, using perhaps 3-5 variables. See our Las Vegas Traders Expo PPT for an example of a system that used only one (1) parameter here: Go to the LVTE Power Point raquo The process within TSL results in simple, high performance trading strategies, and simpler is better. TSL is very easy to use which is why we have clients ranging from beginners in Technical Analysis and Trading Strategies to PhDs in Computer Science, Economics, Machine Learning and AI. Our 6 minute demo summarizes how easy TSL is to use. If you can accomplish these three steps, you can use and be productive with TSL. Go to the TSL demo raquo In the 2016 Issue 3 of Futures Truth, TSL remains at the top of the list of Trading Systems evaluated on Sequestered Data. TSL has the 1 and 2 Bond System, 2 of the Top 10 eMini SP Systems (the only 2 ES systems TSL has in tracking), the 4 Natural Gas System (out of 1 submitted), and the 1 and 9 Systems since Release Date, and these systems were Machine Designed, not Human Designed, as early as 2007. Futures Truth is a CTA, has a staff of Trading System designers, tracks over 700 Trading System Market-Models submitted by over 80 worldwide Trading Strategy Quants and has been tracking Trading Systems since 1985. TSLs clients range from beginner to PhD Quant since TSL requires no programming. Go to the Futures Truth website raquo Additional historical reports may be found in Futures Truths reports as well as in TSL presentation material. Go to past Futures Truth Report Summary raquo Read the opinion letters from Futures Truth and other developers and traders here: Go to the Futures Truth Opinion Letter raquo Numerous new features for 2016 have been added to TSL including In-SampleOut-of-Sample Scatter plots with Wilcoxon tests, Design-Time Adjustable Solutions(DAS), DayTrade Discrete Bars(DTDB), SuperBuffer increases, SubSystem Usage Reports and a soon to be announced options testing integration feature. Please take a look at our latest Flash Demos: Go to the TSL Flash Demos raquo TSL IS PLEASED TO ANNOUNCE THE RELEASE OF DTDB: DTDB stands for Day Trade Discrete Bars. This package allows for the trading of individual discrete bars on a individual bar basis. Entering on a limit, market or stop, the trade will usually exit at the close of a time, volume, range, etc. type bar. Once designed, using the TSL System Stats report, a user can determine the best time of day, day of week, day of month, day of week in month, week of year and month of year to trade. Filtering this way captures the money flow early and late in the month or quarter that has been observed in capital markets volume, for example. Further it is well known that intra day volatility has a U shape with high volatility occurring early and late in the day. This effect can be targeted using Custom Design Sessions and the System Stats report filtering approach. The features for algorithm design capturing short-term and daytrading moves in the market using TSL is substantial and offer a rich environment for discovery and design. See the DTDB flash demo for more information. Go to the DAS Flash Demos raquo TSL IS PLEASED TO ANNOUNCE THE RELEASE OF DAS: TSL is easy to use but DAS takes Ease of Use to another level. DAS goes beyond EVORUN by providing a higher level of control over the automatic design choreography taking place between the Linear Automatic of Machine Code with Genetic Programming Engine and the Integrated Trading Simulation routines inherent in TSL. DAS allows the human user to evaluate the effect of various trading criteria far faster than before with direct control over the engine during Design Time. DAS exploits the ALPHA generating capabilities of the TSL code writing engine at a level which was previously unachievable. Using DAS, users can now direct and redirect the run, in Design Time, during the design run, not simply configuring the run and then executing the run. EVORUN provides the user with a automatic multi-batch run mechanism allowing for a longer run covering many trading and simulation variants to be explored during the run, however DAS connects the human designer with the design engine allowing for a vast array of immediate what if scenarios to be explored. The conceptual breakthrough of TSLs DAS is both creative and unique in this business and provides the user with ALPHA design and production capabilities we could have only dreamed about just a few years ago, notes TSLs President, Michael Barna. The plan now is that DAS will be officially released to clients on or before the November International Traders Expo in Las Vegas where TSL will be giving several presentations on TSL, EVORUN and DAS. New DAS videos may be found here-Demo 57 and 58: Go to the DAS Flash Demos raquo Super Buffer Update: Within the patented LAIMGP Trading Systems are stored for implementation during the run. Previously, 30 Best Trading System Programs would be made available for implementation when the run was terminated. TSL has increased this Best Trading Systems Program Buffer to 300. So, a user may select from a much larger list of Trading Systems when the run is terminated. This increased Buffer will be available for Basic Runs, EVORUN and DAS. Please read below for information on DAS. End of day(EOD) trading systems are the simplest and fastest to Machine Design. Even in a portfolio of many markets, the TSL engine self-designs trading systems at a very high rate thanks to patented register GP manipulations and high speed simulation, fitness and translation algorithms. Our GP technology is well documented in the leading university textbook on Genetic Programming written by one of TSLs partners, Frank Francone. Particularly important is the fact that still, after 8 years of Sequestered Data independent testing and rating, TSL Machine Designed Trading Algorithms occupy more top performance ratings than any other development company - 5 of the Top 10 since Release Date, 3 of the Top 10 systems for the past 12 months, and 2 of the Top 10 eMini SP systems. End of Day trading systems are very popular, however intraday trading systems appeal to the more risk adverse traders and interest in shorter term trading systems has increased in recent months. Perhaps due to the concern for higher interest rates, energy and commodity price collapses, geopolitical uncertainty, terrorism, or the recent market volatility, many traders are less willing to hold positions overnight. The logic here is that with overnight risk, the degree of exposure and consequently the chance for higher drawdowns is increased. Of course, intraday volatility might collapse or expand, leading to muted returns or substantial risk as well, particularly for the directional short-term trader. Nevertheless, not holding a trading position overnight does have a great deal of appeal, especially if trading costs can be controlled and trading system alpha production is sufficient. TSL has a large array of day trading features, including short term Fitness Functions, Preprocessors and Daytrading specific Trading Types. TSL Machine users can select the trading frequency, average trade targets, trading times, drawdown targets, and a host of other design objectives. Additionally, input settings for TradeStation and MultiCharts are exported allowing for easy importation to these platforms. TSL is pleased to announce that CSI COMMODITY SYSTEMS, INC. and TSL have formed an agreement to provide to our clients a portfolio of commodity data, specifically engineered for TSL Machine Learning. To obtain this data a CSI data subscription is required. No other vendor provides this specifically engineered data. This daily data will allow for improved Trading Strategy design using TSL and is the result of many years of research and development of data requirements. Without proper data, robust Trading Strategy designs are very difficult to accomplish. These data portfolios are downloaded and installed as part of the CSI data application. Helper files such as. DOPs and Attributes. INI files are preassembled by TSL to allow for easy data import into TradeStation. Other platforms that can read ASCII, MetaStock or CSI price data may load this data as well for use with TSL. Contact TSL to learn more about this new Trading System design data. CSI has been shown to have the most accurate commodity data available. Go to the CSI data report raquo For those of us who live and work in Silicon Valley, TSL is sponsoring a MEETUP group for people interested in Machine Learning applied to Trading Strategies where we will be exploring various applications and customizations of the TSL platform. You can sign up here and meet other trading professionals who are working with TSL and Machine Learning technology. Join Silicon Valley Machine Learning for Trading Strategies MeetUp Group raquo TSL is pleased to release TSL Version 1.3.2 Portfolios, Pairs and Options and the latest 2015 build for Single Market directional Systems. Contact us for information on these latest builds that focus on directional, long or short, daytrading, Fitness APIs and new entry, risk and exit features. The latest Futures Truth reports still show TSL Machine Learning designed Trading Strategies top rated on Sequestered Data 7 years after their designs were frozen and released for independent tracking which points to robustness in the future for these TSL Machine Designed Strategies. QUANT SYSTEMS LAB UPDATE: TSL remains the main platform of choice for the professional and nonprofessional trader. Quant Systems Lab, however, is a high end, institutional level machine learning platform offering features more appropriate to the advanced quant programmer who routinely uses a variety of APIs and programming development languages and environments. QSLs features are not found in any other trading strategy development platform in the world. QSL also encompasses all of the rich development features found in the base TSL platform. QSL is currently under development. RML and TSL are actively seeking partnerships with institutions who may wish to steer this development and application environment in a direction that is appropriate for their goals and desires relative to trading approach, research and development and implementation environments. This is a great time to inject your own requirements on the next wave in Machine Learning applied to Trading Strategy design. Contact TSL or RML directly for more information on this unique and exciting new development. TSL is a Machine Learning algorithm that automatically writes Trading Systems and the Trading Systems created by this machine are top rated by Futures Truth and were evaluated on Sequestered Data. No programming is required. No other Trading System tool in the world has reached this level of achievement. TSL is a remarkable Platform given the fact that the Trading Systems designed by the TSL machine over 7 years ago are still top rated by Futures Truth. TSL employs a Patented Automatic Induction of Machine Code with Genetic Programming engine capable of very high speeds and TSL produces production code, reducing or eliminating the need for trading system programming efforts and technical analysis expertise. The Executive Brief and Demo located below will give you a overview of this powerful trading strategy production tool. It is important to note that TSL designs an unlimited number of Trading Strategies on any market, any time frame, day trading or end of day, as well as portfolios, pairs and options, again, with no programming required. Clients range from beginners to PhD level Quant researchers and developers, domestic and international, as well as CTAsCPOs, Hedge Funds and Prop shops. Now, with 7 years of experience serving trading customers, TSL has acquired a high level of experience in Machine Learning as applied to Trading Systems. TSL provides one-on-one training and consulting at no additional cost to clients, to help ensure clients get the most out of the TSL engine. A end to end 6 minute TSL design of a eMini system is available here: View the TSL Executive Brief: raquo Trading System Lab reduces the complexity of trading strategy design down to a few settings and mouse clicks, saving time, money and programming. This Self Designing Trading Strategy Algorithm uses an advanced, patented, register based Genetic Program (not to be confused with a Genetic Algorithm) that is not available anywhere else in the world. These machine designed trading strategies remained robust through the extreme financial meltdown years and subsequent recovery. This paradigm shift showed that a properly chosen and developed machine learning algorithm can automatically design robust trading strategies. The LAIMGP was developed by RML Technologies, Inc. and the Simulation, Preprocessing, Translation, Fitness routines and Integration was accomplished by Trading System Lab(TSL). TSL licenses the complete package to individuals, proprietary trading firms and hedge funds. Preprocess your data, run the advanced genetic program and then implement to your trading platform. We demo this process in a simple 6 minutes flash demo available in the link below. All TSL trading strategies are exported from the machine fully divulged in open code. TSL strategies have been third party performance rated on sequestered data. Arguments regarding the use of Out of Sample (OOS) data are generally centered around the possible accidential use of this held out data in the development processs. If this happens, then the blind data is no longer blind, it has been corrupted. To eliminate this possibility, TSL submitted machine designed strategies for testing on Sequestered Data. What this means is that the strategy performance measurement occurs in the future. Since the held out data does not exist when the strategies were designed, there is no way that this evaluation data can be accidently used in the development process. Strategies produced by the TSL Machine have been tested on Sequestered Data by the independent third party, Futures Truth and are top rated, beating most other Human or Manually designed Trading Systems. NEW Here is how you use TSL evolved systems in a C or C OMSEMS: View the TSL C Brief: raquo For those of you who missed the LinkedIn Automated Trading Strategies Group Webinar presented by Trading System Lab titled: WHO DESIGNS BETTER TRADING STRATEGIES A HUMAN OR A MACHINE you may download it here here: Download the TSL Webinar: raquo The free period is over for the new Kindle Book containing our article titled: Machine Designed Trading Systems, however you can download this inexpensive Kindle Book here: Download the Kindle Book raquo TSL is now officially on the Silicon Valley Map. Silicon Valley Map and TSL location(6 oclock position)raquo TSL is a machine that designs algorithms, forward walks, backtests, multi runs, EVORUNS and export code in a variety of languages. As far as forward robustness, TSL holds numerous top rankings with machine designed trading algorithms as reported by the independent reporting company, Futures Truth. These (machine designed) systems out-performed, in forward walk, most or all other (manually designed) tracked systems, and included slippage and commission in the testing. (see references below) The paradigm shift is that these systems were designed by a machine, not a human, and the TSL Machine designs millions of systems at very high rates using an advanced, exclusive, patented algorithm (LAIMGP), specifically engineered to automatically design trading systems. Traders with no programming experience can run the TSL platform, produce the trading algorithms and deploy them in a variety of Trading Platforms including TradeStation, MultiCharts and specialized OMSEMSs. Programmers and quants can accomplish even more advanced work since the Terminal Sets are fully customizable. TSL is capable of using multi-data DNA within its preprocessors. See Demo 48 where we use the CBOE Volatility Index (VIX) to Machine Design a eMini SP Trading System. This type of design work is simple to accomplish in TSL since the preprocessor is completely customizable using your unique patterns and indicators in a single or multiple data stream design. Enhanced Preprocessors have been shown to offer an additional boost to Trading System performance. How did the TSL Software that writes Software Machine out-design other human submissions to FT with no programming required How do Machine Designed Trading Systems actually work Our development chronology is well covered in our White Papers and Flash Demos available on the TSL web site. The Linkden Automated Trading Strategies WEBINAR can be found here: Go to the LinkedIn WEBINAR raquo The 2015 OUANTLABS WEBINAR can be found here: Go to the 2015 QUANTLABS WEBINAR raquo The 2014 OUANTLABS WEBINAR can be found here: Go to the 2014 QUANTLABS WEBINAR raquo What is the Optimum Bar Size to trade 100 tick, 15 minute, daily. TSLs new EVORUN module allows strategies to be Machine Designed while iterating over Bar Size, Trade Type, Preprocessor, Trading Frequency and Fitness Function in one multirun. EVORUN and TSL Version 1.3 Demos 51 and 52 are now available here: Go to TSL Demos raquo ALL TSL STRATEGIES ARE FULLY DISCLOSED IN OPEN CODE. WANT TO READ A BOOK ON THE TSL GENETIC PROGRAM Frank Francone co-authored the university textbook Genetic Programming: An Introduction (The Morgan Kaufman Series in Artificial Intelligence). TSL has several HFT projects underway on various colocated servers near exchange matching engines. TSL machine designed strategies may be deployed on order book based data or sub-second bars. See Demo 50. Contact TSL for additional information. Using OneMarketData, TSL can Auto-Design High Frequency Trading Strategies. Demo 50 shows an example using 250 millisecond granularity Order Book Data created using OneMarketDatas OneTick Complex Event Processing Order Book Aggregator. TSL is a stochastic, evolutionary, multirun, Trading Strategy autodesigner that produces and exports portable code in a variety of languages. This is a complete end to end Trading System design platform and will autodesign High Frequency Trading Systems, Day Trading, EOD, Pairs, Portfolios and Options Trading Systems in a few minutes with no programming. See Theses, White Papers, PPT Presentations and other documentation under the Literature Link at the left. Watch the Flash Demos at the left for a complete briefing on this new technology. The TSL Platform produces Machine Designed, Trading Strategies at ultra high rates thanks to register level evaluations. No other trading strategy development platform on the market provides this level of power. The LAIMGP-Genetic Program within TSL is one of the most powerful algorithms available today and operates at rates much faster than competing algorithms. With TSL, trading systems and code are written for you in languages including C, JAVA, Assembler, EasyLanguage, and others through translators. Frank Francone, President of RML Technologies, Inc. has prepared a flash demo titled Genetic Programming for Predictive Modeling. RML produces the Discipulus Genetic Programming engine that is used within TSL. This tutorial is an excellent way to learn about Discipulus and will provide a basis for your continued understanding of TSLs Auto-Design of Trading System Paradigm Shift. TSL simplifies the data import, preprocessing and design of Trading Systems using Trading System performance as fitness. Make sure you watch the TSL demos as the TSL platform is specifically targeted for Trading System design. Download the Discipulus tutorial raquo The technology used in Trading System Lab is 60 to 200 times faster than other algorithms. See White Papers on speed studies at SAIC here: Go to white papers raquo Phone: 1-408-356-1800 e-mail: (protected)
Comments
Post a Comment